

Programming in the Weird

This is a talk about computer programming
languages.

Not your normal programming languages like C or
python.

Instead what happens when you look at the
stranger corners of programming.

Esoteric Programming Languages as they are
known

Why not use a sensible language

● https://en.wikipedia.org/wiki/List_of_programming_languages

● Many of those can do useful things and have domain specific
benefits, why would you want to avoid them and look at
something completely different

● C, Python, .Net, C#, Lisp, Haskell, Prolog, Shell (Bourne and C
http://www.faqs.org/faqs/unix-faq/shell/csh-whynot/) and many
others.

● These make sense, they can be useful and solve problems,
future programmers can read and understand the source.

https://en.wikipedia.org/wiki/List_of_programming_languages
http://www.faqs.org/faqs/unix-faq/shell/csh-whynot/

Obfuscating normal languages

● There are competitons to make some of these sensible
languages look horrible

● C - http://www.ioccc.org/
● Python -

http://p-nand-q.com/programming/obfuscation/python/more.html
and http://wiki.c2.com/?ObfuscatedPython

● Perl (of course) -
https://en.wikipedia.org/wiki/Obfuscated_Perl_Contest or the Just
Another Perl Hacker thing http://perl.plover.com/obfuscated/
(2500 words to explain what it is doing)

http://p-nand-q.com/programming/obfuscation/python/more.html
https://en.wikipedia.org/wiki/Obfuscated_Perl_Contest
http://perl.plover.com/obfuscated/

Prolog – Useful domain specific language

Prolog is a language used for AI and searching problems with
nicely defined data structures, naturally recursive and data is
declared as part of the code. So sure if you define a huge
database of information and then make some qquestions it works
brilliantly. The Airline industry uses it for airfare searches and it
matches that problem really well. However if you want to use it for
something like a syslog daemon it may not be the perfect match.

● http://www.drdobbs.com/parallel/the-practical-application-of-pr
olog/184405220

● http://www.academia.edu/16789218/If_Prolog_is_the_Answer_
What_is_the_Question_or_What_it_Takes_to_Support_AI_Progr
amming_Paradigms
 (great paper talking about using many domain speccific tools to
solve a problem)

http://www.drdobbs.com/parallel/the-practical-application-of-prolog/184405220
http://www.drdobbs.com/parallel/the-practical-application-of-prolog/184405220
http://www.academia.edu/16789218/If_Prolog_is_the_Answer_What_is_the_Question_or_What_it_Takes_to_Support_AI_Programming_Paradigms
http://www.academia.edu/16789218/If_Prolog_is_the_Answer_What_is_the_Question_or_What_it_Takes_to_Support_AI_Programming_Paradigms
http://www.academia.edu/16789218/If_Prolog_is_the_Answer_What_is_the_Question_or_What_it_Takes_to_Support_AI_Programming_Paradigms

Wrong tool for the job?

● A prime example of this is SHDNS
● Michael Still gave a talk at linux.conf.au in 2004 about his

implemntation of DNS in Shell
● https://linux.org.au/conf/2004/abstracts.html#1
● Source available at http://www.stillhq.com/shdns/
●

https://linux.org.au/conf/2004/abstracts.html#1
http://www.stillhq.com/shdns/

So why Esoteric languages?

● They help you think outside
the box

● Though many of them are like
thinking outside a box in a
foreign country

● With instructions in Latin

● Likely containing a wild animal
that may try to bite you

● haec continet magna felis sit
mordebunt vos

Creating new languages

● Lexx and Yacc (or the
better GNU tools, flex
and bison) allow easy
creation of fast output
from some arbitrary
grammar

● LEX analyses input streams (text files) using
regular expressions to tokenise them into
something that makes more sense

● YACC (Yet Another Compiler Compiler) analyses
the structure of the tokens, makes sure they are
syntactically correct and applies grouping for a
bigger picture look

● Using these tools you are able to turn text into
some other form of text or into some actions to
do something in c code

Obviously some of the creators of Esoteric
languages decided using text as an input really
made things too easy. Hence we have Velato with
midi files as source code and Piet which uses
bitmaps that appear to be abstract art as source
code.

Intercal – the original

● From 1973 -
http://www.muppetlabs.com/~breadbox/intercal-man/

● For a long time a print out of that was all that people had
available to talk about it

● In the 90s C-Intercal was implemented and released and the
language became more popular

● A paper worth reading, Why you should program in intercal
http://catb.org/esr/intercal/stross.html

http://www.muppetlabs.com/~breadbox/intercal-man/

● Getting rid of GOTO,
https://en.wikipedia.org/wiki/Considered_harmful

● Polite programmers
● Percentage chance execution
●

https://en.wikipedia.org/wiki/Considered_harmful

 PLEASE NOTE THIS PROGRAM RECOGNIZES "HELLO, WORLD" USING COME FROM

 DON'T TYPE IN ANYTHING ELSE, OR YOU'LL GET AN ERROR!

 PLEASE NOTE: COMPILE WITH ick -m FOR THIS TO WORK.

 DO ,1 <- #12
 (1) DO WRITE IN ,1
 DO GIVE UP

 PLEASE NOTE THIS CHECKS EACH CHARACTER IN TURN
 DO COME FROM '#255~'"?',1SUB#1'$#72"~"#0$#255"''~#1
 PLEASE START WITH AN H NEXT TIME

 DO COME FROM '#255~'"?',1SUB#2'$#253"~"#0$#255"''~#1
 DO (2) NEXT
 DO REMEMBER THAT E COMES SECOND

 DO COME FROM '#255~'"?',1SUB#3'$#7"~"#0$#255"''~#1
 DO (4) NEXT
 PLEASE USE L THIRD NEXT TIME

 DO COME FROM '#255~'"?',1SUB#4'$#0"~"#0$#255"''~#1
 PLEASE DO (2) NEXT DO (4) NEXT
 DO USE TWO LS, NOT A SINGLE L

 DO COME FROM '#255~'"?',1SUB#5'$#3"~"#0$#255"''~#1
 DO (8) NEXT
 PLEASE END 'HELLO' WITH 'O'

 DO COME FROM '#255~'"?',1SUB#6'$#221"~"#0$#255"''~#1
 DO (8) NEXT PLEASE DO (2) NEXT
 DO USE COMMAS TO SEPARATE WORDS

 DO COME FROM '#255~'"?',1SUB#7'$#244"~"#0$#255"''~#1
 DO (8) NEXT PLEASE DO (4) NEXT
 PLEASE USE SPACES AFTER PUNCTUATION

 DO COME FROM '#255~'"?',1SUB#8'$#55"~"#0$#255"''~#1
 DO (8) NEXT DO (4) NEXT PLEASE DO (2) NEXT
 DO START 'WORLD' WITH A 'W'

 DO COME FROM '#255~'"?',1SUB#9'$#248"~"#0$#255"''~#1
 DO (16) NEXT
 PLEASE PLACE AN O IN THE NINTH POSITION

 DO COME FROM '#255~'"?',1SUB#10'$#3"~"#0$#255"''~#1
 DO (16) NEXT DO (2) NEXT
 DO USE AN R IN THE MIDDLE OF WORLD

 DO COME FROM '#255~'"?',1SUB#11'$#250"~"#0$#255"''~#1
 DO (16) NEXT DO (4) NEXT
 PLEASE LET AN L BE PENULTIMATE

 DO COME FROM '#255~'"?',1SUB#12'$#248"~"#0$#255"''~#1
 DO (16) NEXT PLEASE DO (4) NEXT DO (2) NEXT
 DO END WITH A D

 (2) PLEASE RESUME #1
 (4) DO (2) NEXT DO (2) NEXT DO RESUME #1
 (8) DO (4) NEXT DO (4) NEXT PLEASE RESUME #1
 (16) DO (8) NEXT DO (8) NEXT PLEASE RESUME #1

Reigniting the passion in the 90s

The paper about why it is the next best thing from ESR, his
implementation C-Intercal etc

Brainfuck

● Interesting origin, has exploded to be the best known Esoteric
language

● Brainfuck was invented by Urban Müller in 1993, in an attempt to
make a language for which he could write the smallest possible
compiler for the Amiga OS, version 2.0. He managed to write a
240-byte compiler. The language was inspired by False, which
had a 1024-byte compiler. Müller chose to name the language
brainfuck

● Thus it is an interesting idea and implementation, though any
attempt to use it becomes painful

++++++++++[>+++++++>++++++++++>+++>+<<<<-]>++.>+.++++
+++..+++.>++.<<+++++++++++++++.>.+++.------.--------.>+.>.

Taking the idea of what BF was doing to another level, Binary
Lambda Calculus

Whitespace

Meme Central, LOLCODE

● This is almost a shame to talk about, if you were ever caught up
in the lolcats memes online

● http://lolcode.org/

● The spec is online linked from there
https://github.com/justinmeza/lolcode-spec/blob/master/v1.2/lo
lcode-spec-v1.2.md

● Though the spec is somewhat incomplete this is mostly just a
substitution for normal operation language

http://lolcode.org/
https://github.com/justinmeza/lolcode-spec/blob/master/v1.2/lolcode-spec-v1.2.md
https://github.com/justinmeza/lolcode-spec/blob/master/v1.2/lolcode-spec-v1.2.md

● Comments -
I HAS A VAR ITZ 12, BTW VAR = 12

 I HAS A VAR ITZ 12
 OBTW this is a long comment block
 see, i have more comments here
 and here
 TLDR
 I HAS A FISH ITZ BOB

● If-Then-Else

BOTH SAEM ANIMAL AN "CAT"
O RLY?
 YA RLY, VISIBLE "J00 HAV A CAT"
 MEBBE BOTH SAEM ANIMAL AN "MAUS"
 VISIBLE "NOM NOM NOM. I EATED IT."
OIC

● Loops

IM IN YR <label> <operation> YR <variable> [TIL|WILE <expression>]
 <code block>
IM OUTTA YR <label>

However there is a LOLPython that allows you to write effectively
in LOLCode but has access to the python libraries, best of all
worlds?
http://www.dalkescientific.com/writings/diary/archive/2007/06/01/lo
lpython.html

On that page you can see an example of generating the fibbonacci
sequence in LOLCODE

http://www.dalkescientific.com/writings/diary/archive/2007/06/01/lolpython.html
http://www.dalkescientific.com/writings/diary/archive/2007/06/01/lolpython.html

Arnold Scharzenegger

● ArnoldC is a language that is similar to LOLCODE with pretty
basic token repalcement and is another Meme style language

● Hello World is

IT'S SHOWTIME
TALK TO THE HAND "hello world"
YOU HAVE BEEN TERMINATED

False I LIED

True NO PROBLEMO

If BECAUSE I'M GOING TO SAY PLEASE

Else BULLSHIT

EndIf YOU HAVE NO RESPECT FOR LOGIC

While STICK AROUND

EndWhile CHILL

PlusOperator GET UP

MinusOperator GET DOWN

MultiplicationOperator YOU'RE FIRED

DivisionOperator HE HAD TO SPLIT

ModuloOperator I LET HIM GO

EqualTo YOU ARE NOT YOU YOU ARE ME

GreaterThan LET OFF SOME STEAM BENNET

Or CONSIDER THAT A DIVORCE

And KNOCK KNOCK

DeclareMethod LISTEN TO ME VERY
CAREFULLY

NonVoidMethod GIVE THESE PEOPLE AIR

MethodArguments I NEED YOUR CLOTHES
YOUR BOOTS AND YOUR MOTORCYCLE

Return I'LL BE BACK

EndMethodDeclaration HASTA LA VISTA, BABY

CallMethod DO IT NOW

AssignVariableFromMethodCall GET YOUR ASS
TO MARS

DeclareInt HEY CHRISTMAS TREE

SetInitialValue YOU SET US UP

BeginMain IT'S SHOWTIME

EndMain YOU HAVE BEEN TERMINATED

Print TALK TO THE HAND

ReadInteger I WANT TO ASK YOU A BUNCH OF
QUESTIONS AND I WANT TO HAVE THEM
ANSWERED IMMEDIATELY

AssignVariable GET TO THE CHOPPER

SetValue HERE IS MY INVITATION

EndAssignVariable ENOUGH TALK

ParseError WHAT THE FUCK DID I DO WRONG

Similar but different - Omgrofl

● Similar tokens to LOLCODE, however operates differently

● Stack/Queue based language (thus turing complete)

● The behaviour is more similar to BF, though obviously far more
verbose

● Examples

Example- Addition of two numbers

● In Omgrofl

loool iz lol

looooool iz lool

rtfm

 wtf looooool iz liek 0

 tldr

 brb

 lmao loool

 roflmao looooool

brb

● In C

uint8_t loool = lol;

uint8_t looooool = lool;

while (true)

{

 if (looooool == 0)

 break;

 loool++;

 looooool--;

}

Doing something different (CHEF, Shakespeare)

Hello World Cake with Chocolate sauce.

This prints hello world, while being tastier than Hello World Souffle. The main

chef makes a " world!" cake, which he puts in the baking dish. When he gets
the

sous chef to make the "Hello" chocolate sauce, it gets put into the baking dish

and then the whole thing is printed when he refrigerates the sauce. When

actually cooking, I'm interpreting the chocolate sauce baking dish to be

separate from the cake one and Liquify to mean either melt or blend
depending on

context.

Ingredients.

33 g chocolate chips

100 g butter

54 ml double cream

2 pinches baking powder

114 g sugar

111 ml beaten eggs

119 g flour

32 g cocoa powder

0 g cake mixture

Cooking time: 25 minutes.

Pre-heat oven to 180 degrees Celsius.

Method.

Put chocolate chips into the mixing bowl.

Put butter into the mixing bowl.

Put sugar into the mixing bowl.

Put beaten eggs into the mixing bowl.

Put flour into the mixing bowl.

Put baking powder into the mixing bowl.

Put cocoa powder into the mixing bowl.

Stir the mixing bowl for 1 minute.

Combine double cream into the mixing bowl.

Stir the mixing bowl for 4 minutes.

Liquify the contents of the mixing bowl.

Pour contents of the mixing bowl into the baking dish.

bake the cake mixture.

Wait until baked.

Serve with chocolate sauce.

chocolate sauce.

Ingredients.

111 g sugar

108 ml hot water

108 ml heated double cream

101 g dark chocolate

72 g milk chocolate

Method.

Clean the mixing bowl.

Put sugar into the mixing bowl.

Put hot water into the mixing bowl.

Put heated double cream into the mixing bowl.

dissolve the sugar.

agitate the sugar until dissolved.

Liquify the dark chocolate.

Put dark chocolate into the mixing bowl.

Liquify the milk chocolate.

Put milk chocolate into the mixing bowl.

Liquify contents of the mixing bowl.

Pour contents of the mixing bowl into the baking dish.

Refrigerate for 1 hour.

The really challenging

● Befunge - really weird

Hello World

0"!dlroW ,olleH">:#,_@

● Malbolge – Dante, hell

(=<`#9]~6ZY32Vw/.R,+Op(L,+k#Gh&}Cdz@aw=;zyKw
%ut4Uqp0/mlejihtfrHcbaC2^W\>Z,XW)UTSL53\HGFjW

Thoughts and interesting bits

● Greenspun's Tenth Rule
https://en.wikipedia.org/wiki/Greenspun's_tenth_rule

Any sufficiently complicated C or Fortran program contains an ad hoc,
informally-specified, bug-ridden, slow implementation of half of
Common Lisp

● JWZ - Every program attempts to expand until it can read mail. Those
programs which cannot so expand are replaced by ones which can.

● Software Peter Principle (called that on wikipedia), the idea of how
software can become too complex for anyone to understand. Most
languages and methodologies attempt to avoid that

● Esoteric languages go in the other direction

https://en.wikipedia.org/wiki/Greenspun's_tenth_rule

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

